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Abstract
We study, via extensive Monte Carlo calculations, the effects of connectivity
in the dynamic model of neural networks, to observe that the Mattis-state
order parameter increases with the number of coupled neurons. Such effects
appear more pronounced when the average number of connections is increased
by introducing shortcuts in the network. In particular, the power spectra of
the order parameter at stationarity are found to exhibit power-law behavior,
depending on how the average number of connections is increased. The cluster
size distribution of the ‘memory-unmatched’ sites also follows a power law
and possesses strong correlations with the power spectra. It is further observed
that the distribution of waiting times for neuron firing fits roughly to a power
law, again depending on how neuronal connections are increased.

PACS numbers: 05.65.+b, 87.18.Bb, 87.18.Sn

1. Introduction

Many biological systems in diverse areas apparently exhibit no characteristic scale spatially
and/or temporally, manifested by power-law distributions of the event sizes and durations in the
dynamics [1]. Numerous evidences can be found particularly in brain activity: for instance, an
electroencephalogram displays 1/f frequency scaling [2] and wait times (interspike intervals)
in cortex neurons follow a power-law distribution [3]. Such scale invariance properties are
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often referred to as originating from spatio-temporal correlations among their constituents [4]
and regarded as a footprint of the so-called self-organized criticality (SOC) [5, 6].

On the other hand, there is experimental evidence [7, 8] that some regions of the nervous
system, e.g., the visual cortex, possess small-world geometry [9]. It is well known that neural
networks in small-world topology have many advantages: memory retrieval performance is
enhanced as compared to random-network topology with the same total connection length
[10]. Likewise the connection topology is expected to affect the dynamics of the system
substantially. There is, however, little work addressing dynamics of the neural network on the
small-world geometry [11], and it is of interest to probe how the dynamic properties change,
depending upon the small-world topology.

For this purpose we adopt a dynamic model for neural networks, which uses continuous
time and takes explicitly into account several time scales such as the refractory period, time
duration of the action potential and the retardation of signal propagation [12]. These dynamic
characteristics are realistic in view of the biological situation and seemingly encompass the
necessary ingredients of the SOC-type dynamics, accumulation and dissipation of energy.
With a simple Hebb-type rule [13], the model reproduces desirable features similar to those
of conventional models [14, 15] in the fully connected limit. The model has further been
extended to the cases in which neuronal loss proceeds, incorporated with the dynamic failure
model [16]. In a related dynamic failure model for biological systems, it has been found that
both temporal and spatial correlations are correlated, exhibiting power-law behavior, which is
attributed to the interplay of the phase transition and SOC [17].

In this work, we study the connectivity effects in the neural network, focusing on the
(global) order parameter and on the dynamic properties of the system. The connectivity is
varied in two ways, either by increasing the number of coupled neighbors or by introducing
shortcuts between neurons. It is observed that the order parameter in general grows with
the number of connections, as expected. We then compute the power spectrum of the order
parameter, which exhibits, for a given value of the order parameter, different shapes depending
on how the connectivity is varied. Further, the power spectrum has correlations with the cluster
size distribution of memory-unmatched neurons; both exhibit power-law behavior. We also
consider the wait time, i.e., the time elapse for a neuron to wait for the next firing, and find its
distribution to follow roughly a power law.

This paper consists of four sections. In section 2, the dynamic model of neural
networks is described, together with the method of Monte Carlo (MC) calculations.
Section 3 presents the results of MC calculations, describing the connectivity effects of the
network. Finally, a summary is given in section 4.

2. Dynamic model and Monte Carlo calculations

We consider a neural network consisting of N neurons, the ith of which is modeled by an Ising
spin si = ±1. The threshold behavior of the ith neuron at time t is described by a probability
that depends on the local potential

Ei(t − td) =
∑

j

Jij (t − td)sj (t − td), (1)

where 2Jij is the strength of the synaptic junction from the j th neuron to the ith one (Jii = 0)

and sj (t − td) denotes the state of the j th neuron at time t − td with td being the time delay in
interaction (i.e., retardation of signal propagation, mostly through the synaptic junction) [12].
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According to the simple Hebb-type learning rule [13], the synaptic strength is constructed of
p stored patterns

Jij =
{
N−1 ∑p

μ=1 σ
μ

i σ
μ

j for i �= j

0 for i = j,
(2)

where σ
μ

i = ±1 is the state of the ith neuron in pattern μ(=1, 2, . . . , p).
We first prescribe the conditional probability that the ith neuron fires at time t + δt given

that it does not fire at time t

p(si = +1, t + δt |si = −1, t; s′, t − td) = δt

2tr
[1 + tanh βE′

i], (3)

where s′ ≡ (s ′
1, s

′
2, . . . , s

′
N) represents the configuration of the system at time t − td and the

‘temperature’ T ≡ 1/β measures the width of the threshold region or the noise level. Except
for the factor (2tr )

−1δt , which takes into account the existence of the refractory period tr ,
the above expression has been chosen essentially following [14]. Similarly, we write the
conditional probability that the ith neuron does not fire at time t + δt given that it fires at time
t. For sufficiently small δt , the probability on the average over all the neurons may be written
in the form

p(si = −1, t + δt |si = +1, t; s′, t − td) = δt

t0
, (4)

where t0 is the time duration of the action potential, usually of the order of one to a few
milliseconds. Thus the time average has been essentially incorporated in the above expression.

After rescaling time t in units of the delay time td , equations (3) and (4) can be combined
to give an expression for the conditional probability p(−si, t + δt |si, t; s′, t − td), which, in
the limit δt → 0, can be expressed in terms of the transition rate:

p(−si, t + δt |si, t; s′, t − 1) = wi(si; s′, t − 1)δt. (5)

The transition rate is given by

wi(si; s′, t − 1) = 1

2τ

[(
a +

1

2

)
+

(
a − 1

2

)
si +

1 − si

2
tanh βE′

i

]
, (6)

with a ≡ tr/t0 and τ ≡ tr/td .
The behavior of the network is then governed by the master equation, which describes

the evolution of the joint probability P(s, t; s′, t − 1) that the system is in state s′ at time t − 1
and in state s at time t. In consequence, equations describing the time evolution of relevant
physical quantities, with the average taken over P(s, t; s′, t −1), in general assume the form of
differential-difference equations due to the delay in interactions. For example, one may find the
equation of motion for the activity of the ith neuron, mi(t) ≡ 〈si〉t ≡ ∑

s

∑
s′ siP (s, t; s′, t−1),

which, in the case of the infinite-range interaction or in the fully connected limit, leads to the
self-consistency equation [12]. One may also find the time evolution equation for the ‘order
parameter’ qμ(t) ≡ N−1 ∑

i σ
μ

i mi(t), which describes the overlap between the neurons and
the memory μ.

In this work, we focus on the Mattis-state solution of the form qμ(t) ≡ q(t)δμ1, which is
fully correlated with just one of the quenched memories. As usual, patterns are generated at
random, i.e., σ

μ

i is taken to be a quenched random variable, assuming +1 and −1 with equal
probabilities:

p
(
σ

μ

i

) = 1
2δ

(
σ

μ

i − 1
)

+ 1
2δ

(
σ

μ

i + 1
)
. (7)

To investigate the connectivity effects, we put neurons on a square lattice of linear size
L and perform dynamic MC calculations with the transition rate in equation (6), varying the
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number of coupled neurons or the number of connections per neuron. We increase the number
of connections in two ways: (i) For each neuron we increase the number of coupled neurons
up to nth nearest neighbors. In this way a particular neuron becomes coupled with k0 other
neurons. (ii) Another way to increase the number of neurons is to construct a small-world
network, starting from the L × L square lattice and adding a shortcut with given probability
between each neuron and another chosen randomly [18]. To this end, we fix the coupling
within the nearest or the next nearest neighbors (setting k0 = 8) and probe the behavior of the
system as Nsc, the total number of shortcuts, is varied. Obviously, only connected neurons
can interact, so that Jij in equation (2) does not vanish only if the ith neuron and the j th one
are connected with each other.

In MC calculations, we use the lattice size L = 64 and 128 with up to five memory patterns
(1 � p � 5), which are generated according to equation (7) at each run. The initial state of the
system is chosen to be one of the memories, which, together with the p memories and given
connectivity of the lattice, comprises one configuration. Specifically, we consider 30–100
different configurations for each set of values (a, T ) and set the relaxation time τ = 5 and the
time step �t = 0.5. These parameter values have been varied, only to give no appreciable
difference except for the time scale. Then the neuronal states are allowed to flip according to
the transition probabilities in equations (3) and (4). Among ordered states of the system, we
choose only the Mattis state. Behaviors of the order parameters and other results described
below do not depend qualitatively on the number p of memory patterns examined (1 � p � 5),
and here only the results for p = 2 are presented. We presume that those behaviors persist
qualitatively unchanged even for larger values of p(�N), provided that the Mattis state exists
unambiguously, although we have not considered fully such large values. For large values
of p, the ordered Mattis state is observed very rarely during simulations, especially in the
parameter regime where the order–disorder transition takes place. Accordingly, it takes an
enormous amount of computing time to probe the system.

3. Results

Figure 1 displays the Mattis-state order parameter q̄ averaged over time versus k, the average
number of connections per neuron, obtained from MC calculations for a system of N = 4096
neurons with the time ratio a = 0.5, on a square lattice of size L = 64 at temperature T = 0.1.
Only the data points for the ordered stationary state are plotted; in the region where there are
no data points we have q̄ = 0. In the case that k0 is raised by just increasing the number
of nearest neighbors (solid circles), q̄ grows slowly with k, approaching the mean-field value
q̄MF = 0.66 at k ≈ 45. On the other hand, when shortcuts are introduced with fixed k0(=8)

(empty circles), the growth is more rapid and saturation is reached at a relatively smaller
value of k(≈20). This manifests that the presence of shortcuts in the system, allowing a
neuron to couple to other neurons far apart, makes the system more mean-field-like than
just increasing the number of coupled neurons. Such performance is one of the well-known
features of the small-world network [9]. As addressed, the behavior displayed in figure 1
remains qualitatively the same even if p is increased (data not shown). However, in order to
achieve the same value of the order parameter q̄, we need more connections, i.e., larger values
of k, as p is increased.

In figure 2, we present the power spectrum P(ω) of the order parameter q(t) versus
frequency ω/2π in a system of neurons on a square lattice of linear size L = 128 with
shortcuts, obtained from the stationary MC time series of q(t). In the system the number of
coupled neighbors is chosen as k0 = 8, with the number Nsc of shortcuts taking several values
ranging from 22 000 to 47 000. It is observed that the power spectrum for Nsc = 22 000 or
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Figure 1. The average value of the Mattis-state order parameter q̄ versus the average number
k of connections per neuron. Data are obtained from MC simulations, for which the number of
connections per neuron corresponds just to the number of neighboring coupled neurons, i.e., k = k0
(solid circles). Also shown are the data when shortcuts are present with k0 = 8 (empty circles).
There are a total of N = L2 = 4096 neurons with the time ratio a = 0.5, on a square lattice of
size L = 64 at temperature T = 0.1. Lines are merely guides to the eye.

Figure 2. The power spectrum P(ω) versus frequency ω/2π , obtained from stationary MC time
series of the order parameter for several values of Nsc as shown in the legend. The neurons are
placed on a square lattice of L = 128, with the number of coupled neighbors given by k0 = 8.

k = 10.7 exhibits apparently power-law behavior: P(ω) ∝ ω−γ with the exponent γ = 1.8
over a wide range of the frequency ω/2π . For a larger value of Nsc or k, the power spectrum
gradually deviates from the power law below a certain frequency, resulting in a shrink of the
power-law region. We recall that for large Nsc the system has already approached the ordered
state and fluctuations are relatively small. In the mean time, for k = 10.7, the system is near
the region in which the transition from disordered to ordered state takes place, where large
fluctuations are present. This type of behavior is also observed in the dynamic failure model,
where both the phase transition and SOC may come into play [17].
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(a) (b)

Figure 3. Comparison of the power spectra for a system on a square lattice of L = 128 in the
absence/presence of shortcuts. (a) k0 = 28 without shortcuts and k0 = 8 with the number of
shortcuts Nsc = 22 000. The other parameters are the same as those in figure 1. Both sets of
data correspond essentially to the same value of the order parameter q̄ = 0.21. Also plotted
for comparison is a straight line of slope −1.8. (b) k0 = 36 with Nsc = 0 and k0 = 8 with
Nsc = 47000. Both correspond to q̄ = 0.56.

The power spectra for systems without shortcuts exhibit somewhat different features.
Compared in figure 3(a) are the power spectra for two systems, one without shortcuts for
k0 = 28 (solid line) and the other with shortcuts for k0 = 8 and Nsc = 22 000 (dotted line).
With other parameters the same as those in figure 2, both systems have essentially the same
value of the order parameter, q̄ = 0.21. Note that the power spectrum for the system without
shortcuts displays an inflection point, unlike that for the system with shortcuts. Such features
persist for other values of connectivity, as shown in figure 3(b) for a higher value of the order
parameter. It is thus concluded that qualitative behavior of the power spectrum depends on
the connectivity as well as how neurons are connected.

In view of the likely connection between spatial and temporal correlations, we expect
to observe power-law behavior of spatial correlations, e.g., power-law distribution of cluster
sizes, in the regime where power-law behavior of the power spectrum emerges. We therefore
measure the size s of each cluster of ‘memory-unmatched neurons’, i.e., those neurons in
state si with siσi = −1. By a cluster, we mean a group of neurons connected as neighbors
in the same state. Figure 4 presents the obtained cluster size distribution D(s) in systems
with/without shortcuts at stationarity, for (a) q̄ = 0.21 and (b) q̄ = 0.56. As observed in
figure 4(a), the size distribution in the system with shortcuts (open circles) fits in the power
law D(s) ∼ s−α in the wider range than the system without shortcuts (filled circles). Also
shown are the least-square fit lines, corresponding to the exponent α = 1.7 (dotted line) and
α = 2.0 (solid line), respectively. It is observed that the size distribution does not fit well
in the power law in the full range of s, whenever the corresponding power spectrum deviates
from the power-law behavior, namely, whenever P(ω) in figure 3 bends considerably; this is
manifested in figure 4(b), regardless of the presence of shortcuts. Further, for systems without
shortcuts, it is observed that the cluster size distribution D(s) also has an inflection point just
like the power spectrum P(ω), again revealing the connection between spatial and temporal
correlations.

Note that the results shown in figures 3 and 4 represent averages over more than 20
configurations and the inflection point always appears in data for systems without shortcuts.
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(a) (b)

Figure 4. Cluster size distribution of memory-unmatched neurons for the data in (a) figure 3(a)
and (b) figure 3(b). Straight lines in (a) have the slopes −2.0 and −1.7, as indicated in the legend.

(a) (b)

Figure 5. (a) Waiting time distribution of resting neurons for the data in figure 3(a). The
broken line has the slope −1.7. (b) Waiting time distribution of resting neurons in networks with
the number Nsc of shortcuts given in the legend. The dotted line corresponds to the exponent
β = 1.8.

Although the physical meaning of the inflection point is not clear, the connection between
spatial and temporal correlations presumably reflects the fact that events involving larger
clusters occur rarely, i.e., in lower frequencies while those involving smaller clusters occur
more frequently. Here the presence of shortcuts in the network would increase the correlation
length of neuronal sites. It is likely that as the correlation length grows larger, so does the
ranges of the power-law behaviors of the power spectrum and of the cluster size distribution.
As a result, the frequency or the cluster size, at which the power spectrum or the distribution
deviates from the power-law behavior, tends to shift to smaller values. This appears to explain
why the inflection point is observed only in a system without shortcuts, where the correlation
length is relatively small.

Finally, we consider the wait time tw, defined as the time elapse for a resting neuron to
wait for the next firing, and show in figure 5(a) the wait-time distribution D(tw), obtained for
the same parameters as those in figure 3(a). It is observed that D(tw) does not fit well in the
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power law for all tw larger than the relaxation time τ = 5, again displaying an inflection point
in the absence of shortcuts. As the number of shortcuts is increased to a moderate amount,
figure 5(b) shows that the distribution tends to fit better in the power law, D(tw) ∼ t−β

w .
Here the dotted line, plotted for comparison, corresponds to the exponent β = 1.8, which
is consistent with observations in central nerve systems and cortex neurons [1, 3]. It is thus
suggested that the system with shortcuts exhibits behavior following a power law more closely
than that without shortcuts; this apparently supports the small-world architecture in the nervous
system, with regard to the power-law behavior.

4. Summary

We have performed extensive Monte Carlo calculations on the dynamic model for neural
networks, focusing on the effects of connectivity, i.e., number of coupled neurons. For this
purpose, the neurons are placed on a two-dimensional lattice and the connectivity is varied
in two ways: (i) by increasing the nearest neighbors and (ii) by introducing shortcuts in the
network.

It has been observed that the Mattis-state order parameter, measuring the memory retrieval,
grows gradually as the average number of connections (or coupled neurons) is increased. This
effect becomes more pronounced when shortcuts are introduced in the network. The power
spectrum of the order parameter at stationarity has also been computed to exhibit behavior
depending on how the average number of connections is increased. Further, the power spectrum
has been found to have correlations with the cluster size distribution of memory-unmatched
sites. Among others, power-law behavior is observed both in the power spectrum and in the
cluster size distribution, mostly of the system with shortcuts near the transition region where
the network begins to order. The waiting time distribution has also been considered and found
to follow roughly a power law in the presence of shortcuts. These results for the power-
law behavior of the system with shortcuts are apparently consistent with the small-world
architecture in nervous systems exhibiting power-law behavior.
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